PHYSICAL REVIEW E

VOLUME 50, NUMBER 4

OCTOBER 1994

Generalization in the programed teaching of a perceptron
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According to a widely used model of learning and generalization in neural networks, a single neu-
ron (perceptron) can learn from examples to imitate another neuron, called the teacher perceptron.
We introduce a variant of this model in which examples within a layer of thickness 2Y around the
decision surface are excluded from teaching. That restriction transmits global information about the
teacher’s rule. Therefore for a given number p = aN of presented examples (i.e., those outside of
the layer) the generalization performance obtained by Boltzmannian learning is improved by setting
Y to an optimum value Yy (), which diverges for  — 0 and remains nonzero while a < a. ~ 5.7.
That suggests programed learning: easy examples should be taught first.

PACS number(s): 87.22.Jb, 05.20.—y
I. INTRODUCTION

The notion of generalization is central to much of
the recent theoretical efforts devoted to neural networks
[1-7]. It means learning a rule of input-output associa-
tion from examples, i.e., generalizing a set of examples
by extracting the rule behind them.

Generalization is usually studied in the context of feed-
forward networks that associate an output z to an input
vector £ of N components z; (¢ = 1,...,N), entering
the network through N input nodes. Neural networks
learn to associate given outputs z* (p = 1,...,p) with
p input vectors 57* of binary components £ = +1.

Such learning networks can be used for at least two
different purposes: pattern storage or rule extraction. In
the first case the associations are defined pattern by pat-
tern. The task of learning them gets harder and harder
with growing p, and — on the average over a distribution
of the patterns — becomes unsolvable beyond some crit-
ical number p., which marks the limit of capacity of the
network. On the other hand, if the learned associations
are governed by a hidden rule, through learning the ex-
amples the network gradually learns to respond to a new
input more and more in accordance with that rule. That
is called rule extraction by generalization from examples.

The examples impose restrictions on the networks.
Those compatible with the examples form the so-called
version space. The error of generalization €(p) can be
defined [1] as the fraction of wrong answers given to any
input (possibly excluding the p learned examples when
testing). The process of learning a rule is associated with
the decrease of that function.

Another suggestive measure of learning is a suitably
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defined entropy telling us how many networks are able
to perform a given task. Depending on the type of the
network, it can be chosen to be <ln N>, where N is the
combinatorial number of possible ways to combine fixed
Boolean gates into a network implementing a Boolean
function [8,9], or <ln V), where V is the volume available
in the “phase space” of adaptable connection strengths of
a neural network [10]. (Here ( ) denotes averaging over a
distribution of random choices of examples.) The prob-
lem can be extended to a finite external noise level and
treated by statistical physics, where the energy function
is the training error [11,3,4]. Learning is accompanied
by a reduction of entropy by the amount of information
contained in the examples presented to the network. As
suggested by Carnevali and Patarnello [8], one can char-
acterize a rule — in their case a Boolean function - -
by the residual entropy measuring the freedom of choice
that remains after learning it: S, = InN,, where N, is
the number of different ways rule r can be implemented
through a given kind of network. They argue that easily
learnable rules are those of a high residual entropy and
vice versa. Although learnability in practice depends on
other factors as well [9], the Carnevali-Patarnello crite-
rion still gives a useful and suggestive first orientation.

Recently considerable progress has been achieved in
analyzing the way a simple perceptron, i.e., a single neu-
ron of binary output

N
z= sgn(Z J,-a:j> = sgn(f- ) . (1)

j=1

learns from examples. The task is to imitate the linear
classification of input vectors implemented by another
perceptron of fixed connection strengths J; = B; (j =
1,...,N), the so-called teacher perceptron [12,13]. Ac-
cording to the general philosophy of supervised learning,
the teacher issues an error message whenever the two out-
puts differ for some example. Learning — not speciﬁeq‘
in its algorithm or dynamics — happens by modifying J
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until the error messages are eliminated for each of the p
examples. It turned out that this kind of learning process
can be analyzed by the method of replicas [3-5]. Several
versions have been investigated [6,7].

In the present paper we introduce an alternative ver-
sion of the original model, in which training examples
are selected by the teacher who knows the rule and de-
liberately excludes the hardest questions, i.e., the ones
almost perpendicular to the teacher’s connection vector
B. Such examples are found in a band of width 2Y
around the decision surface (cf. Sec. II). That gives
rise to a model solvable by the replica technique, fur-
nishing a stable replica symmetric solution. It turns out
that such a modification — in accordance with the every-
day teachers’ wisdom that you should teach simple things
first, complicated ones afterwards — reduces the error of
generalization, at least if the number of examples pre-
sented is not too large. The reason is that rule-guided
pattern selection introduces anisotropy in the space of
examples, marking the direction of the teacher’s connec-
tion vector B. Thereby it acts as an extra channel of
transferring information about the rule itself [17]. Even
if one excludes a finite fraction of hard examples from
the process of learning, in the limit N — oo the rule
can be learned completely, although with slow (logarith-
mic) convergence to zero error. Let us notice that this
is different from selecting examples in order to improve
learning performances, studied by Kinzel and Rujdn [14]
and further analyzed by Watkin and Rau [15], in the con-
text of an active student who has to guess the optimum
choice on the basis of knowledge obtained from previous
learning.

Essentially the same calculations can be given a differ-
ent interpretation: instead of excluding hard examples,
we can consider the error message policy of accepting
any answer to the hardest questions. That philosophy
presents our model as an interpolation between super-
vised learning in the usual sense and reinforcement learn-
ing [16]. More generally, it can be regarded as an illus-
tration to the important fact that neither biological nor
machine learning would fully fix all connection strengths
of the student network, leaving a residual freedom after
learning. In all those cases learning may end up in a
variety of learned states, giving the same answers in the
range where the teacher had given definite association,
and different answers where the teacher gave no hint. In
view of that residual freedom the analysis connects our
calculations to the Carnevali-Patarnello approach.

The most practical consequence — already mentioned
— is the enhanced generalization ability obtained from
rule-guided restriction of the training set. From that re-
sult an objective for further analysis emerges: the de-
velopment of optimal teaching schedules in the sense of
achieving minimum error on presenting a given number
of examples in a programmed nonuniform distribution.
The question is reasonably posed for neural networks of
practical architectures; however, its solution is hard even
for the simple perceptron, and in the present paper only a
restricted question will be answered explicitly: given the
total number p = aN of examples that can be presented
in a given period of teaching, one calculates the optimal
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constant value Y = Yp(a) of the width of the excluded
band that gives the minimum error of generalization.

Our model is defined and analyzed by means of repli-
cas in Sec. II. The relation to the Carnevali-Patarnello
approach and related questions are discussed in Sec. III.
Section IV takes up the analysis with answering the sim-
plest question about optimal teaching schedules: deter-
mining the optimal fized width of the band of hard ex-
amples that should be excluded from learning in order
to achieve minimum error on exploiting a fixed number
of examples. In Sec. V we briefly describe some variants
of the model, differing in detail but not in the essential
content nor in complexity from the one presented in the
main text, and give an outlook. Finally, Appendix A
contains details about the evaluation of the asymptotics
of the generalization ability and Appendix B presents the
derivation of an analytical result concerning the replica
stability matrix.

II. REPLICA ANALYSIS

To analyze the model we use the well-known replica
technique in its zero-temperature version [10,3], evaluat-
ing the entropy per input channel s = S/N connected to
the problem-solving volume V' through

N mY N1l L4
s=N <ln A N an v ) (2)
n=0

where V™ is interpreted as the joint problem-solving vol-
ume for n replicas of the student perceptron, receiving
the same randomly chosen examples and being super-
vised by the same teacher, but otherwise independent
of each other in the course of learning. Vj is the avail-
able phase-space volume restricted by normalization of
J only, not by examples. We choose the normalization
E;V:I |Jg 2= Z;{:l |Bj|? = N, where replicas are labeled
by a = 1,...,n; then Vy = (2me)V/2. We notice that
Eq. (2) gives the zero-temperature limit of —3f, where
f is the free energy per synapsis, if there is no extensive
ground state energy.

A threshold of instruction Y can be introduced to re-
strict teaching to examples £# with projection onto the
direction of B larger in modulus than Y (Fig. 1), i.e.,

N
’N”l/z > o Bgk| > Y. 3)

j=1

Then the excluded equatorial band of width 2Y occupies
a finite fraction 1 — 2H(Y) (for N — o0) of the surface
of the hypersphere of radius v/N in N dimensions. Here
the standard notations Dz = (dz/+/27) exp(—z2/2), and
H(z) = [;° Dz have been used.

More generally, and anticipating the case of a tunable
threshold Y (a), what we have to handle here is a uni-
axial anisotropy in the distribution of learned examples,
with the teacher’s connection vector B as the rotation
axis. The easiest way to do replica calculations for such
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FIG. 1. Restricting the examples used for teaching: B and
J are the connection vectors of the teacher and the student,
respectively. Training examples are taken from outside of
the light gray region. The student J shown here correctly
classifies examples in the white region and misclassifies those
in the dark gray region.

cases is to take into account that for a “typical” direc-
tion of B (i.e., not parallel to any of the coordinate axes)
an unrestricted distribution of examples, uniform on the
vertices of the N-dimensional unit cube £ = +1, can be
approximated as a uniform distribution on the surface
of an N-dimensional sphere of radius v/ N. The central
limit theorem, appearing in some explicit or implicit way
in all replica calculations, is now contained in the fact
that the projection of such a distribution onto the (é T )
plane has mean 0 and dispersion 1 in each direction, be-
ing therefore strongly centered around the origin where
it is Gaussian to O(N™1).

In order to formulate example selection by the teacher,
we introduce a weight function f(y). It depends on the
projection y = B. 13 / V'N of example 5 onto B it is even
in y, and it is normalized to unity over the Gaussum mea-
sure as [ Dyf(y) = 1. Then the distribution of examples

reads
P& = 2r) Y exp (—%) f(?/]_\f > (4)

In the special case of excluding a band of width 2Y ac-
cording to Eq. (3), we have

fly) = [2HY)] 'O(ly| - Y). (5)

The expression to be calculated by means of replicas is

R A

gV )> : (6)
{f(¥)}

The factor 2 accounts for the regions obtained from the

ones presented explicitly by the reflexion £* — —&*, giv-

ing equal contribution to the volume after averaging over

an even distribution of examples.

The evaluation of the above expression follows the
usual course of replica calculations. By introducing the
Fourier integral representation of ® functions, one ob-
serves that the replicated connection strengths J7, the
examples ;‘ , and the conjugate Fourier variables are
combined into random variables with Gaussian distribu-
tion. In the course of averaging second moments emerge,
containing the fundamental order parameters of the prob-
lem: the student-student replica overlaps (for a # b)

—1 b
N7 TR
J

and the student-teacher overlaps

=Ny " B;J5. (8)
i

Then for N > 1, p >» 1 [@a = p/N = O(1)] saddle
points are sought in the multiple integrals and the replica
symmetric ansatz is introduced: g¢o» = ¢ Va,b (a # b),
R, = R Va. In the limit n — 0 through some lengthy
but standard calculation one obtains the entropy in the

form
— R2
s = (ln(l—q)—+—q1 q)

+2a/ Dy f(y /DtlnH (9)

)

Gab =

where the variable

_tva—R?—yR (10)

1—g¢g

has been introduced. The maximum of s can be found
by solving the final equations determining ¢ and R:

PN = ep(-%)
Q\/l—q =/ [ ousw [T oG

(11)

R\/l—q:a\[/ Dy fly / DtexP_j;)

(12)

The numerical solution of Egs. (11) and (12) gives R and
q as functions of a for a given f(y). Substituting the re-
sults into Egs. (9) and (10), we obtain the corresponding
values of the entropy.

As to the measure of performance of the trained net-
work, we focus on the generalization error evaluated over
test examples with Gaussian distribution, given by the
standard formula (3]

= (1/m)cos™' R. (13)

It is only in the learning period that we try to gain ex-
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tra information through example selection by the filter
function f(y), while in the test period f(y) =1 is used.
In that way the generalization error has a common mea-
sure, which enables us to compare the performances of
different teaching programs. We also mention here the
more traditional case when the distributions of both the
training and test sets are identical and given by Eq. (4),
when the generalization error becomes

&(a) = ZAOO Dy f(y)H (y—flj—m>- (14)

Let us turn to the evaluation of the equations of state.
Equations (9)—(12) go over into the result of Ref. [3] with
f(y) =1 and then the two generalization measures (13)
and (14) coincide. In the rest of this paper we restrict
ourselves to the special case corresponding to Eq. (5),
i.e., teacher-guided pattern selection using criterion (3).

The entropy function Eq. (9) is displayed for generic,
fixed a and Y in Fig. 2. The region of real s is delimited
by the curve ¢ = R? and the lines R = 0 and ¢ = 1. Here,
apparently a single saddle point exists, which we identify
with the physically valid solution as presented hereafter
in this paper. Note that while the saddle point is a local
maximum in R, as usual for the most probable state in
ordered systems, it is a local minimum in ¢, which is
characteristic to disorder, as observed already in the case
of the Kirkpatrick-Sherrington model [18]. The saddle
point is actually the continuation in the n — 0 limit
of the maximum found for positive integer n. If R is
considered as a quantity to which a fixed value can be
assigned for any given «, a thermodynamical meaning
can be attributed to the minima of s(g, R) with respect
to g [19]. We note that s(g, R = 0) is independent of
the pattern distribution f(y). It corresponds to the case
of random pattern storage investigated by Gardner [10].
There the local minimum as a function of q appears only
for a < 2, i.e., when error-free storage is possible.

The overlap R is shown in Fig. 3 for various values of

. %
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FIG. 2. Generic entropy surface for @ = 0.94 and Y = 0.25.
There is a single saddle point, maximum in R and minimum
in g, which is identified with the physically relevant solutions
as presented throughout the paper.
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FIG. 3. The evolution of the teacher-student overlap
R(e,Y) as a function of the number of examples presented
(a = p/N for p examples and N input synapses), for various
values of the exclusion threshold: Y = 0 (lower solid line),
0.25, 0.52, 0.84, and 1.28, chosen so as to give, for the re-
spective retained fractions, 2H(Y) = 1, 0.8, 0.6, 0.4, and
0.2. The upper solid line is the envelope. The same values of
Y appear in Figs. 4-8.

Y as function of a. The curves start linearly as

R= % F[HY)] o (15)

however, their envelope behaves as \/a for small o. The
corresponding numerical values for ¢(a, Y) are presented
in Fig. 4.

The crossing curves of Figs. 3 and 4 indicate that at
the initial stage of the learning process, and in any case
if learning is restricted to a relatively small number aN
of examples, it is advantageous to restrict learning to
easy examples by introducing a finite threshold Y. With

0.5 — y T

04+ NN .

03} - .

0.2}

0.1+ J

a

FIG. 4. The error ¢(a,Y) of generalization evaluated on
unrestricted examples, after teaching aN examples which are

restricted by the condition lN —1/2 E;v:l B¢ >Y.
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FIG. 5. The Edwards-Anderson parameter g(c, Y) measur-
ing the average overlap between two different replicas.

growing a the advantage turns into a disadvantage. That
feature is further discussed in Sec. IV.

Neither the Edwards-Anderson parameter g (Fig. 5)
nor the entropy s (Fig. 6) shows the crossing behavior:
both the growth of ¢ towards 1 and the approach of s to
—oo with growing a become slower with the introduction
of a positive Y.

To understand the reason why R and ¢ behave differ-
ently from q and s, it is instructive to consider q as a func-
tion of R (Fig. 7). In the original model with f(y) =1
(Y = 0) one has ¢ = R. For a finite value of Y this is
modified to

¢=2¢7H(Y) R+ O(R?) ~

EREN

a (16)

[cf. Eq. (15)] which holds for small R and crosses over
for R — 1 into

g~ R?, (17)

36 2 ) 3 8 10
a
FIG. 6. The change of the entropy s with learning, for dif-
ferent values of Y.
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0.4 06 08 1

FIG. 7. The student-student overlap ¢ as a function of the
student-teacher overlap R, for various values of the exclu-
sion threshold Y. Upper solid line, Y = 0; lower solid line,
Y — —o0.

the sooner the higher Y is chosen. In particular, for
Y — oo the quadratic dependence of Eq. (17) holds in
the whole range of R.

The above results can be given a geometrical interpre-
tation by considering the decomposition

Gab = N"HJ - Tp) + N~ T - ), (18)

where fl‘!‘ and fj‘_ are the projections of Je parallel and

orthogonal to B, respectively. The first longitudinal term
of Eq. (18) is equal to R? by definition. Therefore, appar-
ently ¢ = R? corresponds to a version space with axial
symmetry around the teacher’s connection vector B , in
which the second transverse term of Eq. (18) vanishes.
In the original situation with Y = 0, quenched fluctu-
ations of the actual choice of the training set strongly
break that axial symmetry, increasing ¢ by R — R? due
to the nonvanishing transverse term. It is that kind of
symmetry-breaking fluctuation which is gradually sup-
pressed by increasing Y or by increasing o with Y # 0.

The insight emerging from the above reasoning is this:
learning more and more examples has a double effect.
First, the version space shrinks, which is measured by
the growth of ¢ and the decrease of s; second, on the
average it becomes more and more parallel to B, which
is reflected on the growth of R and the decrease of .
At the initial stage of the learning process, while R is
small, hard examples contribute efficiently only to the
first effect, whereas the practical aim is connected to the
second. That is cured by the introduction of a positive
Y, excluding those examples which are not immediately
useful at the initial stage of learning. In that way one
obtains faster initial learning, although slower shrinking
of the version space.

As usual, the asymptotic behavior of the error of gen-
eralization for « — oo and Y # 0 can be extracted from
Egs. (10)—(12), as described in detail in Appendix A.
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Unlike in the original case [3], if hard examples are ex-
cluded according to Eq. (5) with Y > 0, in the asymptotic
range the error probability approaches zero as

e~ Y (2r2lna) Y2 for a - co. (19)

We see that the rule can be fully taught through the re-
stricted training set; however, hard examples would be-
come more and more beneficial as learning advances; in
need of them, convergence to zero error becomes loga-
rithmically slow.

We give here also the asymptotics of the alternative
error measure (14) é(a) evaluated over examples outside
of the excluded band

é~ (2alna)™?! (20)

(see Appendix A), a result which does not depend on Y.
It can be shown that this error measure does not show
improvement due to programmed learning for any a.

Let us mention that the situation handled here is differ-
ent from the case of Parrondo and Van den Broeck [17],
who consider teaching an unrestricted set of examples,
however evaluate the generalization error by excluding
the hardest ones — in that case, defined by the student,
not by the teacher. In our case the restriction pertains
basically to teaching, not to testing.

The replica symmetric solution is stable over the whole
range of a, as expected from Gardner’s argument [10],
implying here that a learnable task is implemented by
the simple perceptron on a connected region of the phase
space of connections, excluding the formation of differ-
ent thermodynamical states. Our model satisfies that
expectation. Excluding hard examples makes error-free
processing easier and indeed the stability parameter I’
(see Appendix B) grows with increasing Y for all values
of a (Fig. 8).

r
04| ]
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02} ]
% 5 70 15 20

o

FIG. 8. The replica stability parameter I'. Its vanishing —
not the case here — would indicate instability of the replica
symmetric solution.
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III. RESIDUAL ENTROPY

In this section we consider a reinterpretation of the
above model. First, the distribution of examples is taken
to be pure Gaussian [f(y) =1 in Eq. (4)]. On the other
hand, Y enters through the error message policy: outside
of the equatorial band of width 2Y (called the “band
of tolerance” in this section) the usual error message is
taken, whereas inside that band the error is zero. In
other words, within a range of input questions — in the
present case within the band of tolerance — any answer
is a good answer, whereas for the rest of inputs a well-
defined output is required. Combined rules of that kind
are further discussed in Sec. V.

The problem of fully imitating a teacher perceptron is
the hardest task in the sense of the Carnevali-Patarnello
approach [8]: it can be solved in a single way, by adjust-
ing the connection strengths of the student perceptron
exactly to the values the teacher has. That corresponds
to zero residual entropy in the case of binary connection
strengths and to an entropy of negative infinity for a con-
tinuous but spherically normalized vector of connection
strengths.

The introduction of a band of tolerance into the rule
does not change the structure of the student, who still
classifies outputs according to Eq. (1). One might expect
that in that case the student has a residual freedom in
choosing its connection vector J, with a corresponding
residual entropy. Contrary to that expectation, we find
that for & — o0, like in the no-tolerance case [3], one has
q¢ = R = 1, which entails that s & —oo: our model has
no extensive residual entropy.

The mathematical reason is clear: the radius of the
base of the conelike region available for J after learning
the restricted training set is ¥ = O(1) with respect to
N; therefore for large but finite N the residual entropy
[cf. Eq. (2)] can be estimated as

N
szN—lln( Y N) =InY — 1lnN,
VN 2

(21)

approaching —oco as N — oo, in accordance with the
replica result. Nevertheless, for large but finite N the
above expression is a well-defined Carnevali-Patarnello
entropy of a rule with a band of tolerance.

An extensive residual entropy is obtained by assign-
ing an IV dependence to the tolerance threshold, writing
Y VN instead of Y. Then the above diverging term drops
out and the residual entropy remains finite. In that case,
however, the Gaussian approximation, fundamental to all
applications of the replica technique, breaks down since
the Gaussian centers of the random variables appearing
in the Fourier representation are cut out. An unattrac-
tive property of that variant is that the examples remain-
ing outside of the band of tolerance, and therefore still
carrying information, would be restricted to a vanishing
part of the hypershpere for N — oco.

Turning back to the case of finite N, a related fea-
ture of our model is the fact that the student whose pos-
sibilities are limited to choosing a connection vector J
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FIG. 9. The creation of pseudorules on learning with a
threshold of tolerance: the student assigns a definite clas-
sification to inputs about which the teacher has no definite
opinion.

cannot implement the freedom contained in the rule. In-
stead, as shown in Fig. 9, one stops learning on reach-
ing a connection strength vector J on the nappe of a
cone around the teacher’s connection strength vector B.
That state of mind of the student breaks the rotation
symmetry around B in such a way that the student will
give a definite classification to any input vector, includ-
ing those in the band of tolerance. By that the student
has created a pseudorule extending the range of action of
the learned rule beyond its competence revealed by the
teacher and restricting the freedom of decision admitted
by the teacher’s tolerance. It is a rather common experi-
ence that such pseudorules are created as a consequence
of low-level learning.

While the volume of the residual version space van-
ishes in the thermodynamical limit, signatures of the fi-
nite residuum for finite NV can be seen within the replica
framework. First, the entropy has a slower divergence to
—oo for increasing Y (see Fig. 6), reflecting the tendency
in Eq. (21). Second, the order parameter q decreases,
demonstrating the increase of the version space volume.
Those effects are generally associated with an increase in
the stability parameter I" of the replica symmetric solu-
tion and indeed that happens for increasing Y; see Fig.
8.

IV. PROGRAMMED LEARNING

From the point of view of example selection by the
teacher the simple perceptron can behave in an extreme
manner. If just the “easiest” example, the one parallel to
B, is presented, then both in one-shot Hebbian learning
and in Bayesian learning one arrives at perfect generaliza-
tion. For the Hebbian case that can be easily seen from
the construction [20]. Bayesian learning gives a connec-
tion vector J pointing to the center of mass of the version
space, which after presenting the easiest example covers
the hemisphere with B as its rotation axis.

Boltzmannian learning [3] is different in that respect:
aimed at just reaching the margin of the version space,

it is far from guessing the rule from a single example.
At the beginning of learning, J is typically in a narrow
equatorial band of directions rather orthogonal to B. If
examples are taken from the same band, they only rotate
J around B instead of turning it closer to B. Therefore it
is advantageous indeed to exclude such examples at the
initial stage of learning and include them but gradually.
as learning proceeds. That tendency is expressed in the
crossing curves of Figs. 3 and 4.

To find an optimal schedule for such programmed
learning is a harder task that is beyond the scope of this
paper. Here we choose the simpler case of fixing the to-
tal relative number a of examples and looking for the
optimal width Y = Yy(a) of a band around the decision
surface of the teacher —— the hardest examples -~ that
should be excluded from learning, keeping the distribu-
tion of active examples uniform on the remaining part of
the unit cube. In the Gaussian representation described
in Sec. II that corresponds to the weight function given
by Eq. (5). Of course, as emphasized above, the gener-
alization error is evaluated on the full unrestricted set of
examples.

Our aim is now to find the optimum Yj(a) that gives
the largest value of R and consequently the minimum er-
ror of generalization. That can be done by solving the
saddle-point equations (11) and (12) with weight function
(5) for various values of Y and using numerical interpo-
lation to find the value giving the largest R.

The results are presented in Fig. 10. Below a thresh-
old a. = 5.7, R(,Y) develops a single maximum as a
function of Y at some Yy(a) > 0. Since R(a,Yy(a)) >
R(a,0), programmed learning achieves better generaliza-
tion. For a > a. we have [8R(a,Y)/3Y]Y:0 < 0 and
the global maximum of R in terms of Y is at Yy = 0: the
teacher should use all examples if one can teach more
than a.N of them. In that restricted choice of teaching
schedules therefore the exclusion of hard examples is ad-

|
[

FIG. 10. The optimum value Y5 (@) yielding minimum error
of generalization. On the scale of the figure, Yy is indistin-
guishable from zero already at a ~ 3; however, an accurate
numerical evaluation shows that the curve intercepts the a
axis at a. = 5.7 (beyond the range of the figure).
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vantageous only if learning can utilize but a restricted
number of examples.

V. DISCUSSION

Excluding a band of hard examples from teaching can
be supported by various human attitudes on behalf of
the teacher. Indeed, beside the active teacher who aims
at optimizing the efficiency of teaching by selecting easy
examples, one can think of a teacher who also includes
hard questions but either (i) accepts any answer to them
from the student; or (ii) does not accept any answer to
them from the student. Obviously both of them agree
with the active teacher in giving no information to the
student about the correct answer to the hard questions
nor — in a broader context — about whether a single
correct answer exists at all. Indeed if it does not exist,
their attitude (full freedom or full rejection) is part of the
rule which is then no simple input-to-output fuctional
relationship anymore. In real-life applications such cases
abound; an obvious example is the freedom present in
grammar of human languages.

From the technical viewpoint, case (i), when the
teacher accepts any answer to hard questions, is the same
as the situation discussed in the previous sections; how-
ever, in (i) more examples are used up to achieve the
same generalization performance. Namely, in all formu-
las and diagrams of Secs. II — IV, « is devaluated and
should be replaced by 2H (Y )a.

The situation is similar for case (ii), when the teacher
rejects any answer to hard questions; however, then the
entropy formula Eq. (2) gives —oco for any a because
of the appearance of an extensive positive training er-
ror €; > 0, implying a positive ground state energy per
synapsis. The singularity can be eliminated through the
inclusion of thermal noise in the model. The ground state
entropy is then s = limg_,o, B(e; — f), when we recover
Eq. (9) with a scaled by 2H(Y'). Thus the saddle point
values of the observables R and g are the same as in case
(i), and so is the generalization error.

Selecting examples according to difficulty by the
teacher who knows the rule is only one of the possible
contexts which leave residual freedom to the student af-
ter learning the task. Another one, of greater practi-
cal significance for network learning, although probably
not for a single neuron, is the case when examples are
presented on a fraction of the input channels only, leav-
ing complete freedom in responding to stimuli arriving
through the remaining channels, referring to some other
subject.

Multidimensionality of the space of examples is an im-
portant feature of the learning process, which gives much
weight to hard examples of little use at the initial stage of
learning. Our approach, unlike most of the applications
of machine learning, addresses conscious teachers. We
hope that if extended to more realistic layered networks
to gain more experience about less symmetric cases, it
can be developed into a way of statistically analyzing the
efficiency of teaching in classroom situations and devel-
oping strategies for teaching.
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APPENDIX A: ASYMPTOTIC ESTIMATES

In order to derive the asymptotic estimates (19) and
(20) for the generalization error, we first recall that axial
symmetry about the teacher vector is characterized by
the relation

q=R® (A1)
while the equilibrium solution satisfies
q=R. (A2)

The values obtained from numerical solution for any
fixed Y > 0 and presented in Fig. 7 behave similarly to
Eq. (A2) for small a [cf. Eq. (16)] but asymptotically
approach Eq. (A1) for @ — oo, so that relationship is
correct for the high-a asymptotic region. Then using
also R =~ 1, Eq. (12) reduces to

Vi-r=_2

2 oo
TR

1 Yy ?
eR\o\Vi—e ) |

(A3)

Since R =~ 1, the exponential factor cuts the Gaussian
measure short and one can write Dy ~ dy/v/2w. Then
evaluating the integral we have

a 2 1 Y ’

Taking the logarithm and selecting the term most
strongly diverging with R — 1, we obtain

YZ

Ino =
T - Ry

(A5)

which, using € ~ 771/1 — R? valid in the present limit,
gives Eq. (19) of the main text.
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To obtain Eq. (20) for the error evaluated on taught
examples only, the same estimates should be carried out
on Eq. (14). Partial integration gives

exp [_%(l_gﬁ)j
()

Using Eqs. (A4) and (A5), one obtains Eq. (20) of the
main text.

P \/g\/l—Rz (A6)

2H(Y)

APPENDIX B: REPLICA STABILITY

The stability of the replica symmetric solution with
respect to symmetry breaking perturbations — replicon
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modes — can be determined by using the arguments of
de Almeida and Thouless [21] and Gardner [10]. The
calculation follows Ref. [3], with minor modifications, re-
sulting in the stability parameter

o (g2 c
F:1—2a/0 Dyf(y)/ Dt(_gz_ff(i)), (B1)

—o0

where z is given by Eq. (10). I is the product of the only
two potentially dangerous eigenvalues, those of the repli-
con modes. For a — 0 the replica symmetric solution is
stable, both eigenvalues are positive, and so destabiliza-
tion occurs at the smallest & where I' = 0.

In the canonic case Y = 0, it can be shown that 1 >
' > 1/2 and the lower limit is reached for & — oco. We
observe the inequality I'(a,Y) > I'(a,Y’) if Y > Y’, so
the replica symmetric solution is stable for all Y > 0 and
a > 0. Those features are illustrated by Fig. 8.
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FIG. 1. Restricting the examples used for teaching: B and
J are the connection vectors of the teacher and the student,
respectively. Training examples are taken from outside of
the light gray region. The student J shown here correctly
classifies examples in the white region and misclassifies those
in the dark gray region.



FIG. 9. The creation of pseudorules on learning with a
threshold of tolerance: the student assigns a definite clas-
sification to inputs about which the teacher has no definite
opinion.



